MicroRNA-7a/b Protects against Cardiac Myocyte Injury in Ischemia/Reperfusion by Targeting Poly(ADP-Ribose) Polymerase

نویسندگان

  • Bin Li
  • Rui Li
  • Chun Zhang
  • Hong-jun Bian
  • Fu Wang
  • Jie Xiao
  • Shan-wen Liu
  • Wei Yi
  • Ming-xiang Zhang
  • Shuang-xi Wang
  • Yun Zhang
  • Guo-hai Su
  • Xiao-ping Ji
چکیده

OBJECTIVES MicroRNA-7 (miR-7) is highly connected to cancerous cell proliferation and metastasis. It is also involved in myocardial ischemia-reperfusion (I/R) injury and is upregulated in cardiomyocyte under simulated I/R (SI/R). We aimed to investigate the role of miR-7 during myocardial I/R injury in vitro and in vivo and a possible gene target. METHODS AND RESULTS Real-time PCR revealed that miR-7a/b expression was upregulated in H9c2 cells after SI/R. Flow cytometry showed SI/R-induced cell apoptosis was decreased with miR-7a/b mimic transfection but increased with miR-7a/b inhibitor in H9c2 cells. In a rat cardiac I/R injury model, infarct size determination and TUNEL assay revealed that miR-7a/b mimic decreased but miR-7a/b inhibitor increased cardiac infarct size and cardiomyocyte apoptosis as compared with controls. We previously identified an important gene connected with cell apoptosis--poly(ADP-ribose) polymerase (PARP)--as a candidate target for miR-7a/b and verified the target by luciferase reporter activity assay and western blot analysis. CONCLUSIONS miR-7a/b is sensitive to I/R injury and protects myocardial cells against I/R-induced apoptosis by negatively regulating PARP expression in vivo and in vitro. miR-7a/b may provide a new therapeutic approach for treatment of myocardial I/R injury. Poly(ADP-ribose) polymerase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1

miRs (microRNAs, miRNAs) intricately regulate physiological and pathological processes. Although miR-7a/b protects against cardiomyocyte injury in ischemia/reperfusion injury, the function of miR-7a/b in myocardial infarction (MI)-induced cardiac remodeling remains unclear. Here, we sought to investigate the function of miR-7a/b in post-MI remodeling in a mouse model and to determine the underl...

متن کامل

MicroRNA-489 Induction by Hypoxia-Inducible Factor-1 Protects against Ischemic Kidney Injury.

MicroRNAs have been implicated in ischemic AKI. However, the specific microRNA species that regulates ischemic kidney injury remains unidentified. Our previous microarray analysis revealed microRNA-489 induction in kidneys of mice subjected to renal ischemia-reperfusion. In this study, we verified the induction of microRNA-489 during ischemic AKI in mice and further examined the underlying mech...

متن کامل

Cardioprotective effects of poly(ADP-ribose) polymerase inhibition.

Free radical and oxidant production in cardiac myocytes during ischemia/reperfusion, cardiomyopathy, cardiotoxic drug exposure and ageing leads to DNA strand-breakage which activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP) and initiates an energy consuming, inefficient cellular metabolic cycle with transfer of the ADP-ribosyl moiety of NAD+ to protein acceptors. These processes le...

متن کامل

The role of Akt and mitogen-activated protein kinase systems in the protective effect of poly(ADP-ribose) polymerase inhibition in Langendorff perfused and in isoproterenol-damaged rat hearts.

Blocking poly(ADP-ribosyl)ation of nuclear proteins protects the heart from ischemia-reperfusion injury. In addition, activation of Akt and mitogen-activated protein kinase (MAPK) cascades also plays a pivotal role in the survival of cardiomyocytes during ischemia-reperfusion; however, the potential interplay between these pathways is yet to be elucidated. We therefore tested the hypothesis whe...

متن کامل

Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation

Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative and nitrative stresses; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014